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{ INTRODUCTION

It is clear that a fundamental understanding of turbulence would be
of great practical significance, Since it is suspected that on the very
smallest scales turbulence has certain universal features, it might be
hoped that these would be revealed by a direct numerical simulation,.
Unfortunately the problem of fully developed turbulence is one involving
very m: .y degrees of freedom. Indeed, if R is the Reynolds number, the
necessary degrees of freedom to be treated in a given dimension are of
the order of R3 4. In three dimensions this number is then of the order
of RQ/4 (see, fo. example, Landau and Lifshitz, 1959: for more detailed
estimates, see Case et al., 1973).* Since time steps are restricted by
space steps, the number of needed calculations then grows as R3 (Case

et al., 1973). For the large values of R occurring in practice the

computations then become prohibitive with present (or soo.-to-be-available)

computers,

Under these circumstances it is perhaps recasonable to back off a bit
and ask what can be done in the way of a numerical investigation of the
transition from laminar to turbulent flow. Here, unless otherwiste indi-
cated, we restrict ourselves for simplicity to the incompressible case--

i.e., our flows are described by the Navier-Stokes equations

2 2
;é +V eV =-UP+ Wy 1)
ot

v . v = 0 . (2)

*
References are listed at the end of the: report.




Knowledge of such transitions also has considerable significance for

practical designs. The hope is that we will be able to treat such prob-
lems with presently available computers, since:
(1) Transition frequently takes place at relatively low
Reynolds number.
(2) Transitions are frequently seen to develop throu~h a
number of stages in which the flow is relatively large-
scale (i.e,, involving relatively few degrees of freedom)
Experimentally, the transition takes place in many different ways .,
Indeed, for a given practical situation more than one mechanism may be
responsible, There are a number of ways in which one can characterize
the different possibilities. None of these is completely satisfactory
in that the descriptions are not necessarily unique or mutually exclusive.
One such cataloging is in terms of whether the transition occurs in a
flow that is inviscidly stable or not. Another rather convenient dis-
tinction is between transitions in "free" or "bounrd" boundary layers
(Sato and Kuriki, 1961)., 1In essence, the difference is between flows
that become turbulent rapidly and those that become turbulent gradually,
It is the latter class that we expect to be most amenable to numerical

simulation. However, as we will see, the division is by no means sharp.

Accordingly, we consider .he calculation of transition in a variety
of simple situatiuns that have shown different forms of transition. We
start with problems in which there is much detailed experimental infor-
mation available and some theoretical insight. As will be seen, this
knowledge is very useful in showing us what size calculation must be
performed and what one expects to be able to describe. Assuming that
the initial calculations are successful, we then indicate others that can
be done that hopefully will lead to methods, in which there is confidence,

for calculating transition in situations of practical interest.




Our program is then as follows. First we consider various situations
in which transition could be calculated, These are enumerated essentially
in the order of what we consider their priority. In each case we describe
the physics of the situation and our present understanding. In various
degrees of detail we discuss the limitations of the calculations (reso-
lution needed and uncertainties). An estimate is then made of the compu-
tation effort required. Second, we give some recommendations as to how
a program to do these things could be implemented. These include cost

per year, number of years, organization, and supervision.

It is felt certain that such a program would contribute significantly
to the present state of the art with a relatively modest expenditure of

funds. It is hop~d this will lead to a capability of doing some practi-

cal calculations.




II THE FLAT PLATE

As a first calculation we suggest the numerical study of the transi-
tion in the boundary layer in the flow over a flat plate. The advantages

of this are:

(1) Codes ior this have been developed and some calculations
have been performed (Grosch, 1974; Orszag, 1974).

(2) Excellent detailed experimental information is available
(Klebanoff et al., 1961; Kovasznay et al., 1962),

(3) Considerable theoretical insight is available. Thus
the initial stage of laminar instability is well under-
stood (Schlichting, 1960). Theoretical models give a
qualitative picture of what happens in the later stages
(e.g., Benny, 1961; Stuart, 1962; Lin and Benny, 1962;
Greenspan and Benny, 1963),

There are also disadvantages:

(1) As indicated in our earlier report (cf. Schlichting,
1960, p. 386) there are some ambiguities concerning
downstream boundary conditions,

(2) At the last stages before complete turbulence is
obtained, small-scale motions are found. There is
some question as to whether a calculation designed to
follow the earlier stages of transition can resolve
these,

We return to these two points later.

To illustrate what is involved in the calculation of transition of
the boundary-layer flow over a flat plate, we give a brief (and idealized)

version of the experiment described by Klebanoff et al. (1961).

Over a flat plate located at x 2 0, y = O there flows a fluid with

velocity Us in the x direction toward the plate. The pressure gradient

Preceding nage blank
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is adjusted to be zero. A ribbon is located above the plate in a span-
wise (z) direction perpendicular to the flow at some distance downstream
from the leading edge. Under the ribbon there are strips uniform in

length and uniform!y separated. With the ribbon stationary the x component

(u) of the velocity is, fo any x and z, as shown in Figure 1.
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FIGURE 1 MEASURED VELOCITY DISTRIBUTION IN THE LAMINAR BOUNDARY LAYER
ON A FLAT PLATE AT ZERO INCIDENCE. Source: Schlichting (1960).

The ribbon is then vibrated at a frequency f. At small amplitudes
of oscillation the results are as follows. For a fixed distance x down-
stream the velocity varies essentially sinusoidally in time and with wave-
length, which is the periodicity of the strips in the z direction. The
average velocity distribution as a function of y retains essentially the

form of Figure 1. As we go downstream the amplitude of the oscillations

in u first increases and then gradually decreases.




At a larger amplitude of oscillation the picture changes. As we

proceed downstream from the ribbon the situation is first as above,

Further down, however, there develops o pronouvnceg three-dimensional

structure characterized by large spanwise variations in wave amplitude

with "peaks" and "valleys" occupy ng fixed spanwise positions, Associated

with this variation in amplitude there is also a Spanwise vairiation in

local mean velocity such that there is a defect at a peak and an excess

at a valley. Further downstream there occurs an abrupt ircrease in

amplitude at a peak that is character:zed by a series of intense low-

velocity pulses--evidenced by "spikes" in an oscillogram of streamwise

fluctuating velocity. At first a single spike appears for each cycle of

the primary oscillation., The spikes increase in number as we go down-

—

stream and ultimately blend into fully developed turbulence.

Present theoretical understanding is the following. 1In the absence

of the vibrating ribbon the stationary laminar flow is adequately

described by the boundary-

layer equations for the velocity [u(x,y),v(x,y),

i w=0]:
2
y dy
du  Jv
— — =90
| o = ; (3b)
/
' U=v=0aty=20 A limu = q”
yoo

These equations have the Blasius similarity solution

l;v
0= Uwf(ﬂ) ; vV = “;- fl(n) (4)




With

£ =o' (M 1M = 1/2[e" (M) - o]
we have
e’ + 20" =0 (5)
subject to
®(0) = ¢'(0) =0 . (@) =1

Numerical integration then gives the velocity profile of Figure 1l--in

excellent agreement with experiment,

Remarks:

(1) Two conventional measures of the boundary-layer
thickness used are:

(a) 6 = that value of y for which u = 0.99U_.

Numerically,

6 =5 |[— ] (6)

(2) For the experiment of Klebanoff et al. (1961) approxi-
mate numbers are Ug ~ 1500 cm/s, v = 0,15 cmz/s, and

~ 100 cm. Then, § ~ 0,5 cm, Typically

‘ribbon ribbon

8




the variations described above occurred within 40 cm
of the ribbon. At this point & has changed by only
~20%,

(3) From Figure 1 and the above we conclude:

(a) The velocity distribution varies smoothly within
the boundary layer.

(b) After but a few 6 from the plate (~1 cm for the
experiment) the flow is essentially arbitrarily
close to the free-stream ve locity.

Tc study the effect of external disturbances it is natural to turn

to linear stability theory. Thus, in Eqs. (1) and (2) we substitute

u=u +8u (7)

where Eo is the original laminar flow, and we retain only terms linear

in the perturbation 62. Assuming that a time dependence 62 ~ e-m)t leads
to an eigenvalue problem. If it is found that Im w = wi is > 0, then
initial perturbations can grow, and we have instability. Ia practice,
another approximation is made. Stability locally is studied by assuming
that the profile (y dependence) is such that the one at a given position
xo really extends from -= < x < w, (Since in the problems considered
here the true x variation of the profile is very slow, this is a readily
Justifiable approximation). In this case th2 eigenvalue problen is
simplified. Since there is no explicit x-dependence we can limit our-
selves to investigating solutions with x and z dependence of the form

~ e-(ax+Bz). [Since Squire's theorem (Schlichting, 1960, p. 386) assures
us that the onset of instability occurs first when P = 0, the original
solutions of the eigenvalue problem were obtained for this case]. With

this form of x-dependence the eigenvalue problem can be regarded as one

in which a is given (real) and the complex w is sought.

Figure 2 gives the results for an old calculation of the curve for

*
neutral stability in the o6 , R

b = Uwé*/v plane., It may be noted that

9
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FIGURE 2 CURVE OF NEUTRAL STABILITY FOR THE
WAVELENGTHS a6* OF THE DISTURBANCES
IN TERMS OF THE REYNOLDS NUMBER R
FOR THE BOUNDARY LAYER ON A FLAT
PLATE AT ZERO INCIDENCE (Blasius Profile).
Scurce: Schlichting (1960).

for instability, R6* must be greater than a critical value Rﬂ*c ~ 500
and 06* must be less than about 0.36 (i.e., there is a minimum wavelength
Am:ln ~ 2116*/0.36 ~ 17.56™ ~ 66 for instability). For the experiment
described above this wavelength is Amin ~ 3 cm, while the distance xc
downstream from the leading edge where instability can possibly occur is

X ~ 80 cm,
c

For the experiment, however, it is somewhat more relevant to con-
sider a real w and find the, in general, complex a. (With a =Ima <o,

we have spatial amplification.) A neutral curve in the w, R__ plane is

6 *
shown in Figure 3. We see that there is a maximum frequency for which

such spatial amplification holds. This is
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FIGURE 3 CURVE OF NEUTRAL STABILITY FOR THE
FREQUENCY 3, OF THE DISTURBANCES
AND WAVE PROPAGATIO.N VELOCITY ¢,
FOR THE BOUNDARY LAYER ON A FLAT
PLATE AT ZERO INCIDENCE {Blasius Profile).
Source:  Schlichting (1960).

For the experiment described, this is:

f ~ 300 c¢/s
max

We note also from Figure 3 that the phase velocity (¢ = w/g) of the
r

neutral waves is of order O.4Um or less,

The theoretical Picture of the early stages of the experiment
described is then the following. The oscillating ribbon excites waves
of wavelength ) > 3 em. These are then amplified as we go downstream,
If the initial perturbation i sufficiently small we will pass through
the right-hand neutral curve before the amplitudes are large enough to
void the linear assumption., As we go farther dewnstream the di sturbance
will then be damped out., On the other hand, if the initial disturbance
is large enough it will be amplified within the unstable region down-
stream to u point where linear-stability theory no longer applies and

cannot be used for prediction.

BT
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One further result of linear-stability theory of importance for us

is the shape of the eigenfunctions corresponding to the unstable mode .,

Fron Figure 4 we see that they vary rapidly in the part of the boundary

layer between y = 0 and y=0,2 - 0,46, (For the experiment, this number

is y =0.1 -0.2 cm.) Outside this region the variation is rather smooth.
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FIGURE 4 VARIATION OF AMPLITUDE OF THE u'-FLUCTUATION FOR
TWO NEUTRAL DISTURBANCES IN A LAMINAR BOUNDARY
LAYER ON FLAT PLATE AT ZERO INCIDENCE. The curves
labeled | and |l correspond to the two neutral disturbances | and
IT in Figure 2. Source: Schlichting (1960).

The further development of the flow toward turbulence is somewhat

less know.. theoretically, From models (Benny, 1961; Stuart, 1962; Lin

and Benny, 1962; Gre ‘mspun, 1962; Greenspan and Benny, 1963) and experi-

ment (Klebanoff et al,, 1961) it appears that the amplified two-dimensional

Tollmien-Schlichting wave interacts, as a result of nonlinear terms,

with true 3-dimensional disturbances produced by the spacers. This
combination then gives rise to the distorted boundary layer which in

turn results in the production of the high-frequency disturbances, While

12




the primary contribution of a numerical simulation would be to allow the
develcpment of the nonlinear interaction, two qualitative conclusions

can be drawn:

(1) Resolution in the spanwise (z) direction must be
sufficient so that the expected peass and valleys
can be adequately differentiated.

(2) While the Tollmien-Schlichting waves have their
largest amplitudes and sharpest variation close to
the plate (~0.16) the fluctuations near breakdown
have their largest values much farther out (~0,56)--
cf. Figure 5. From this we conclude that even at
these distances the resolution cannot be too coarse.

I
O 02 04 06 08 10 12 0 0 07 04 06 08 10 12
e e

FIGURE 5 DISTRIBUTION OF INTENSITY OF u-FLUCTUAYION ACROSS BOUNDARY
LAYER: 145-c/s WAVE, Uy/v = 3.1 X 105 f1-1. Source: Klebanoff et al.
(1961).

Let us now turn to the numerical simulation of the above experiment.

Clearly, finite computer capacity restricts us to a discussion of the
flow to some finite region of space and time. In the x (streamwise)

direction this saould begin somewhat downstream from the leading edge of

13



the plate to assure the initial establishment of the laminar flow, but

upstream from the ribbon to diminish spurious effects due to incorrect
boundary conditions. A reasonable guess would be to start at ga pc¢sition
(2—5))\min upstream from the ribbon (where Amin is the minimum unstable
Tollmien—Schlichting wavelength), Downstream from the ribbon we would
like to include all positions till the onset of turbulence, Experimentally
this is ~6Amin' However, as indicated, later ambiguities in the boundary
conditions suggest that the end position be chosc as far downstream as
feasible, A compromise might be that the region in x to be described

is of the order of (10—20)Amin. Since in the spanwise (z) direction we
are describing a periodic behavior, we can restrict ourselves to a dis-
tance equal to one wavelength of the Spaawise perturbation, In the
direction perpendicular to the plate we can, since the laminar flow and
its perturbations go to zero rapidly outside the boundary-layer thickness
6, restrict ourselves to a distance of a few § (say, 26). 1In time we
would like to follow the flow for some significant number of oscillations,

If T be the period of the ribbon the time of interest may be of the order

Now what do these dimensions imply about the number of calculations
to be performed? The problem is to solve Egqs. (1) and (2) in the region
described, subject to suitable boundary conditions (discussed below),

To estimate, we imagine the calculation done by finite-difference methods
in 211 dimensions. (If spectral methods are used, a rule of thumb might
be tha® the number of modes in a given direction be ~(1/2 - 1/3) of the
number of grid points. 1In the x-direction we want to describe a distance
of the order 15Amin. Assuming that this is adequately resolved by 8
points per wavelength we have something like 160 points in the x-direction--
i.e., in the notation below, L ~ 160. 1In the z-direction we have a

distance of only one perturbation wavelength, but to have a chance of

describing the variation near breakdown we need a fine resolution., 4

14




guess is 16 points in this direction (N = 16), In the 6-direction we
have a total distance 26, but as we have seen in the region 0 = y < 0.25,
there are very rapid variations. Hence, with finite-difference methcds
one would use either some coordinate mapping or a varying grid size.
Assuming the latter, one might use of the order of 20 pcints for the
first 0.35 and 20 nore for the remainder--i.e., of the order of 40 grid
points. The sizes of the time steps are essentially determined by

stability requirements--i.e.,
vAt < Or

where v is some appropriate velocity and Or is some mesh spacing. Since

U°° is the largest velocity and it is in the x-direction, a reasonable

criterion (Grosch, 1974) might be

~

ax
At(r .

<o
With the numbers suggested above, this is

0.375 -4
ot < —-—-————-3 ~ 2,5 X 10

~

1.5 X 10

-3
For T = 1/150 ¢/s = 6.7 X 10 ~, this implies of the order of 30 time

steps per cycle and *herefore a number of time steps Nt ~ 300 to 500.

Computer requirements based on these numbers are discussed below.

First, however, we include a few caveats.

A. Boundary Conditions

A well posed problem for solutions of Egs. (1) and (2) would be
one in which the initial velocity is prescribed everywhere within the

region described and the velocity is given everywhere on the boundary

15




for all time (subject to ISE « uds = 0), Unfortunately we do not know
this information, At y = 0 we do., There all components of the velocity
a;e zero., At y = 26 it is clearly correct to a very high degree of ap-
proximation to take the velocity as that of the free stream., At the
upstream edge oi our region it is reasonatle to assume that the velocity
is of the Blasius form plus whatever p~rturbation one might want to put
in. In the spanwise direction a periodicity requirement is reasonable.
What we do not know is the velocity at tle downstream edge of our region.
Two somewhat ad hoc suggestions have been made, Grosch (1974) suggests
"extrapolating'" from the velocity inside. If L is the downstream edge

of the region, this formally is of the fom
L L

[e¥%

U(L,szyt) = U(X,Y,Z,t) g(x) dx + :' (X,Y,Z,t) h(X) dx

(oY)

0 0

In some sense this may be regarded as a kind of radiation condition,
which might indeed be reasonable, How well the actual choice made of
g(x) and h(x) approximates such a condit on is not clear. Also, there

is an uncomfortable situation in that the pressure at x = L is calculated
from du/dt, while to advance forward in time du/dt is calculated using

the resulting p. The possibility of an instability occurs.

Orszag (1974) proceeds by dropping certain terms as small, With the
emasculated equations he demonstrates uniqueness if at all bouncary
points either p or V ¢ n is given as well as v for points such that

V « N o < 0. (Note: this demonstration involves an additional, but
~ ~o

reasonable, approximation.) The difficulties here are:

(1) We do not know p or vV « non the downstream boundary,

(2) We do not know v so that we cannot even determine when

V e n <0.
2 ~out

(3) The approximations involved need to be Justified. (In
fairness it must be noted that Orszag has r=cently
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suggested svrme modified bhourdary conditions about which
we have insufficient information to permit making an
eveluaticn.)

We would like to suggest that results obtained will be ratiior in-

sensitive

arguments:

(1)

(2)

A fur

stream bou

to the choice of downstream boundary conditions. There are two

For Tollmien-Schlichting waves the group velocity (cg)
is of order 1/3U,. Iere then Cg ~ 500 cm/s. Then to
travel a distance of the order of 50 cm from the ribbcn
to the downstream edge requires ~ 1/10 s, which is
approximately 15 periods of oscillations, and one might
not even follow the developments much further in time.

The essential use of the velucity on the boundary is to
compute the pressure within our region. This can be
obtained by taking a special solution of the Poisson
equation and adding to it a solution of Laplace's
equation

2
VP=0

chosen to satisfy the boundary condition., If the y
variation of the boundary condition is ~ eiky, then
the fall~off in the x direction is:

-k|x-L|
P~Pe
o]

Now a reasonable guess for the y variation is k25 ~ 27,
(Remark: We are thinking of deviations from the Blasius
profile. ¥or the latter, of course, P is independent

of y.) This suggests, then, that the boundary conditions
imposed at the downstream edge will have little effect

a few wavelengths upstream, It is for this reason that
we have suggested that the downstream edge of the calcu-
lation region be some distance beyond where we hope to
find a turbulent transition.

ther argument that suggests things are insensitive to the down-

ndary conditions is found by noting that the velocities (phase

and group) of the Tollmein-Schlichting waves are usually small (~ 1/3)




compared to the free-stream velocity. This suggests that any such

disturbance will be convected downstream and have little effect upstream.

in Appendix C we give a simple model for which the arguments for

exponential fall-off and downstream convection are verified in detail.

However, it is obvious that none of the above arguments are rigorous.
It is essential that whatever boundary conditions are used should be
varied (within reasonable limits) to see how far upstream we need to be
in order to have confidence that the results are not artifacts caused by

the assumptions made.

B. Calculations at Breakdown

As we have noted, there comes a point where the boundary layer is so
modi fied by the nonlinear wave interactions that it becomes strongly un-
stable. At this point high-frequency oscillations suddenly appear. In
model calculations the instabilities grow by orders of magnitude in a
fraction (~ 1/10) of the primary period. The scheme described above will
nct be able to follow such rapid variations, At best, a large irregular
change in velocities betwoen two successive time steps might be found.
However, even this may not occur--the large space and time differences
may average out such irregularities. One approach to proceeding further
is suggested by the fact that breakdown (Klebanoff et al., 1961) appears
to occur at very localized points. Hence, we can utop the calculation
when at some x,z there is a profile that according to linear stability
theory is highly unstable. Then we consider only a small region in the
vicinity of this point, For this region we introduce a much smaller
space-time mesh and then integrate the Navier-Stokes equation with initial

conditions obtained from the previous calculation.
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III COMPUTER REQUIREMENTS

A. Introduction

The basic problem under consideration is that of flow over a flat

plate as illustrated in Figere 6. L, M, and N are the numbers of mesh

y (NOURMAL TO PLATE),
M= 32-64

ow /———\,\_/_\_____\/7)( - D'RECT'ON"

/ L= 128-256

FLAT PLATE OF INFINITE
SPAN IN (x, 2) PLANE

z {SPAN DIRECTION), N= 8-16

FIGURE 6 GEOMETRY OF FLAT-PLATE NAVIER-STOKES PROBLEM

points in the x, y, and z directions at which one calculates the flow
variables v and P. Two approaches to the solution of the Navier-Stokes
equations on digital computers are considered here: the finite-difference
scheme of Dr, Chester Grosch, and the spectral method of Dr. Steve Orszag.
We have examired the finite-difference method in considerable detail

with the help of Dr. Grosch, but the spectral method has proved more
difficult to investigate, as noted below. The objective of this section
is to make some computer-run-time estimates for both methods on three-

dimensional problems of interest. The results should not be taken as a
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comparison of the two methods (as we discuss below), but rather as an
indication of the computer run time and therefore cost that one can

expect on optimized "production runs" for useful prcblems.

B. Finite-Difference Method

The finite-difference method for flow over a flat plate in two di-
mensions (x,y) is discussed in detail by Grosch (1974). The method is
fairly easily generalized to three dimensions, The basic changes are
that the Poisson equation for the pressure V2P-Q = 0 must be solved in
three dimensions and that three components of v are required, thus
complicating the finite-difference equations. The Poisson equation is
solved by taking a two-dimensional Fourier transform in the (x,z) plane
for each of the M values of y in the mesh, We then solve (LN) tri-
diagonal equation svstems--i.e,, one system for each mesh point in the
(x,2z) plane, This solution yields the Fourier components of P for each
plane perpendicular to the y axis., An inverse Fourier transfrom then
yields P, A set of three finite-difference equations yields the three
components of v and the loop is completed, Table 1 summarizes the
operations required and the total number of operations per time step.
Multip'ying the terms in Table 1 by their appropriate computation times

yields the total computer time (Ade) per calculation time step:

AT = LMN {t (95 + 3 log IN) + t (81 + 2 log LN) + 28t } (8)
fd a 2 m 2 s

where t , t , and t are the particular computer's add, multiply, and
a m s

memory access times,

c. Spectral Method

It is impossible to determine exactly how Orszag implemented his

calculation, If his report (Orszag, 1974) is examined it will be
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noticed that no detailed discussion is given about the solution technique.
Verbal conversations with Orszag helped some, but it is difficult to
Jjudge the validity and efficiency of the calculations. In at least one
case, the report contains conflicting statements concerning the step-
integration method employed. "Adams-Bashforth" is indicated on p. 31,

but "Runge-Kutta' is used in the actual code. Since the computer code
still contains "bugs,” it is not clear just how valuable the results of
the study were. Although it is not evident from the report, it is abso-

lutely true that Orszag has made significant contributions to the field.

The general method can be described as a part spectral method and
part finite-difference method. According to Orszag, 20 two-dimensional
real FFTs (fast Fourier transforms) and two one-dimensional FFTs are
required for each plane normal %o the flow per time step, and the time
spent in FFTs is 60% of the total computer run time. Also, he stated
that it took 9 seconds per time step for L = 128, M = 8, and N = 64,
Thus, a general formula for estimating the run *ime on a CDC-7600 can

be derived as follows,
First, let us consider FFT operations:

(1) Complex transform in one dimension requires

N
(;) log2 (N) butterflies with

4 multiplies + 2 additions/rotation + 4 additions/butterfly

1}

multiplies + 6 additions for each butterfly yielding
3N logz(N) additions and

2N logz(N) multiplications in all,

(2) Real transform in one dimension requires

N N
= ]| log =1 +1 butterflies or
4 2 \2
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N
Nilog =)+ 1] =2 N log_ N multiplications and
2\2 2

EE 1 N additions
2°g2 '

(3, 2-D complex transform (M X N) requires

N

&=

N
{E log2 (Ni butterflies (1-D Transforms)

followed by

[
N 3 log2 Ni butterflies (1-D Transforms)

NM
=— |l1og_ M + log_ N| = NM log  MN butterflies
2 2 2 2

or

4 multiplication
6 addition

NM log2 (MN) X

_ 4 MN log, (MN) multiplications
T ]6 MN log, (MN) addition.

(4) 2-D real transform (M X N) requires

N N
M{z [log2 (E) + 1]} butterflies followed by

M M\
N{4 [log2 (2/ + 1]} butterflies

= EE lo E + 1o E + 2] = E§ lo MN butterflies
=2 %% \a €y \2 4 € '

or

MN log2 MN multiplies
-;— log2 MN additions

Orszag has estimated that the (20L) two-dimensional real FFTs and
(2L) one-dimensional FFTs require about 60% of his computing time. For
the 7600, multiplication is about twice the time of an addition. Define
one operation as an addition; hence, multiplication is equivalent to two

operations and a butterfly is 14 operations:
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M N
2L (1D FFTs) =~ 141 [(Z) logzM + (Z) logzN] operations
MN
20L (2D FFTs) =~ 20 X 14L (Z—) logz(MN) operatioils

The total run time (AT ) per computation time step on the 7600 is then
s

1 M N
OT ~ K’ (=—) (4L) |5 N AL =] log N
.~ K (0. ) (14L) [ MN logz(lN) + (4) og2M + (4) Jog2 J

6
AT =K'L {117 MN logz(MN) + 5.,8Mlog M+ 5.8N log N]
S

where K’ is a calibration factor (equal to the add time in seconds).

Now, from Orszag's experience on the 7600 we know that ATq ~ 9s for L =
128, M = 8, and N = 64, Substituting this into the above equation yields

-7
K’~1,3X 10 ', so the effective add time (t ) is about one ps.
S

Now, for a single-calculation time step we will allow 60% of the

run time to the 20L two-dimensional FFTs--i.e., neglecting the two one-

dimensional FFTs, we allow 30% of the run time to the solution of tri-
diagonal equation systems, and 10% of the run time to 14 memory accesses
per mesh point, So from Orszag's experience we can derive an approxi-
mate formula giving AT;, the computiug time required for a single time

step in the Navier-Stokes calculation:

AT = LMNt (45 log MN) + LMNt (30 log MN) + 14 LMNt 9)
s a 2 m 2 s

where L, M, and N are the numbers of mesh points in the x (flow),

y (normal), and z (span) directions; and t , t , and t are the computer's
a m s

effective addition, multiplication, and memory access times.




.

D. Comparison of Computing Time Estimates

The computing-time estimates (per time step) for the finite difference
and spectral methods discussed above are given by Egs. (8) and (9). The
particular computer's effective add, multiply, and memory access times
are denoted by ta' tm, and ts. Two features are common to both methods:

(1) The computing time increases approximately linearly

with the number of mesh points,

(2) The multiplication terms are more heavily weighted

than the addition terms when one considers that

multiply times are typically about twice as long as

add times,
However, there are also some interesting differences. The finite-
difference method is more sensitive to memory access time and therefore
will fare relatively worse on a memory-limited machine., For a typical
application the spectral method is most heavily governed by the multi-
plication time, while the finite-difference method is about equally de-

pendent on the multiplication and memory access times.

The computing-time estimates given below should be qualitied on
several points, First, the estimaces are intended only as a very rough
guide to the sort of computing times one might expect on rather highly
optimized "production runs.” We have used effective values of ta, tm,
and ts derived from the experience of Dr. Steve Orszag on the CDC 7600
computer where he ha:i taken care to reduce the run time by optimization
and the use of many assembly-language-coded subroutines. The finite-
difference methocd of . Chester Grosch has never been optimized for the
7600, so the figures below are in a sense a rough projection of what the
finite-difference method could do if optimized in a similar fashion.
Spectral methods are thought to give better resolution of the hydrodynamic

variables for a given mesh size. Thus, for calculations of a given

accuracy, the number of mesh points required could be less for the spectral
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method. Finally, the algorithm for the finite-difference method has been
examined in more detail than has that for the spectral method. Given
these uncertainties, one should regard the estimates below as only rough
indications of the range of computing time required, and hot as a com-

parison of the two methods,

For problems of interest thke numbers of mesh points required in the
X, ¥, and z directions fall in the following ranges: L ~ 128-256, M ~
32-64, and N ~ 8-16. 1In Table 2 we have estimated the run times for
maximum (~ 250,000 mesh points), minimum (~ 33,000), and typical (~ 66,000)
problems. AT, the computer time per calculation time step is calculated
from Eqs. (8) and (9) using "effective" values of ta ~ 130 ns, tm ~ 260 ns,
and tS ~ 1 ps. These effective values are derived from the experience
of Dr, Steve Orszag on the CDC 7600 computer, but we have used them for
estimating both ATS and Ade. Typically, 300 to 500 time steps are re-
quired to carry a calculation to the transition stage, so we have taken

T = 400 AT as the total run time,

Table 2

ESTIMATED COMPUTING TIME FOR SPECTRAL
AND FINITE-DIFFERENCE METHODS

AT AT T T
Problem L M N LMN fd s fd s

Maximum | 256 | 64| 16 262,144 |20 s (40 s | 2.0 hr | 4.0 hr
Minimum| 128 | 32 8 32,768 2 s 4s}10.2 hr {0.5 hr

Typical | 128 | 64 8 65,536 Ss 8 s]10.,5 hr (0,9 hr

Note: L = Along flow; M = Normal to flow; N = Along span,




Again we should emphasize that these figures should not be taken as
a comparison of the finite-difference and spectral methods--they are too
rough. The main voint here is that for svitably optimized codes the run
times are not unacceptably long. Given a typical cost of ~ $700 per hour
for a 7600, the production run cost for the "typical’ problem is about

$500. Optimization and assembly language coding (assumed here), which

take advantage of the architecture of a given computer, can give a time
reduction as large as a factor of five. So one could expect an unopti-

mized run to cos). about two to five times as much as these "production

1"
runs,




IV WAKE OF A FLAT PLATE

A prob em closely related to the above transition in the boundary
layer of a flat plate is that of transition in the wake of a flat plate,
Some reasons for considering this problem next are:

(1) The calculations are very similar to the previous one.

A suitable program for the flat-plate calculation
would require modest changes in order to treat the wake.

(2) Detailed experimental information is available for
comparison (for example, see Sato and Kuriki, 1961).

(3) The nature of the transition is rather gentle. In
contrast to many other turbulent transitions, this
one is not achieved by the development of sharp
bursts. Accordingly, it may be expected that
transition can be followed numerics L1y very far.

Drawbacks to this calculation are:

(1) As previously, the downstream bourdary conditions

are ambiguous,

(2) The applications to practical design are somewhat

indirect.

Our understanding of this transition runs as follows: The Goldstein
(1aminar) wake (Goldstein, 1933) is unstable according to two-dimensional
linear stability theory. Thus a small perturbation is amplified when
one proceeds downstream, Eventually nonlinear effacts take over. (The
growth rate is not the predicted exponential, and harmonics of the in-
duced perturbations appear.) Further downstream a distinct three-
dimensional pattern appears and the flow becomes more and more irregular,
However, we emphasize that no sharp bursts or spikes appear. This should

be an ideal problem for numerical simulation.

Preceding page blank 29




Since, as indicated, the problem is so much like the flat-plate

transition, computing requirements will also be pretty much the same.
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V WEDGE FLOWS

The numerical simulation of transition in wedge flows would be of

considerable interest, The reasons for this are:

(1)

The calculation is very similar to the flat plate.
[Indeed, one code (Grosch, 1974) has been written
to include this possibility.] The essential reason
for this is that the boundary-layer equations for
the flat plate are just a special case of that for
the wedge. Thus, if Bn is the included angle, the
potential flow is

U(x) = Ux" (10)
o

where
m=B/(2-e) ’

and the boundary layer is described by the equa‘*ions
(Schlichting, 1960, p. 143):

UxE'm ., =-J"‘+ I el YR E-5 ST
o 2 o m+ 1 ’
(11)
m+ 1 v 1
o m -
= =2 12
i e 3 : (12)
Hn Hn ! 2
£ + 212" 4+ Bl - €H ] =0 | (13)
subject to £(0) = £'(0) =0 , f'(») =1

We note that with B = O this is just our flat-plate
equation, (The factor-of-2 difference occurring
between Eqs. (5) and (13) is due to a different
normalization.)




-

(2) By varying the parameter B we can study the effects of
pressure gradient. Thus, with B > 0 we have accelerated
flow (and therefore greater stability), while for <O
we have deceleration (and more instability).

(3) With B = 1/2 we have the equations of the boundary layer
for a rotationally symmetric flow.

(4) Measurements of the boundary-layer transition on a flat
plate with mild, favorable pressure gradients (DeMetz,
1974) are available for comparison with the calculations,

As we have indicated, the computing requirements are as for the

flat-plate case.




VI POSSIBLE FUTURE PROBLEMS

There seem to be many different mechanisms for transition to turbu-
lence. For an understanding of these mechanisms, it would be desirable
to do numerical simulation in relatively pure situations. Here we give
a 1list of some of these and an indication of why they are of interest.
(Since the calculations are of a somewhat different nature than those
described above and have less direct practical application, we think
they should be done at some later date. Accoréingly, we have not made
any computing estimates. However, it seems that they are problems of a
magnitude similar to that of the problems discussed above--but computa-

tion would probably require new codes.)

A, Couette Flow

This flow between concentric rotating cylinders is, of course,
classic. Extremely good experimental results are available (Donnelly,
1963; Coles, 1965). From a theoretical standpoint this is a very clean
problem, The ambiguity of the boundary conditions disappears. In the
radial direction we have well defined boundary conditions on the cylinders,
Azimuthally we have periodicity. In the longitudinal direction periodicity

is a reasonable requirement.

When the inner cylinder rotates more rapidly, there is seen experi-
mentally a rich set of phenomena (Coles, 1965). When the rotation rates
are changed we pass from the original laminar state through a multitude
of different states with well organized f{low patterns. In addition,
hysteresis effects manifest themselves--i.e., the state achieved depends
on the past history. It would be fascinating to reproduce these effects

by numerical simulation and it should be possible to do so.
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When the outer cylinder rotates more rapidly, something that Coles
(1965) has called "catastrophic transition" occurs. There is a sudden
jump to states with significant turbulence. Frequently there are alternate
spirals of turbulent and laminar fluid. This could well be not resolvable

with present computers.

B. The Bénard Problem

This is the problem of a fluid heated from below. Mathematically
it is closely related to the Couette f.ow. Linear stability theory
correctly predicts the change from the yuiescent state. However, it
makes no prediction as to the structure that develops--hexagonal cells,
rolls, etc., Model-type calculations--essentially including some non-
linearity--have been done to determine the structure. Since these cal-
culations are quite similar to those made to describe the nonlinear
region in transitions on a flat plate, it would be worthwhile to see

with numerical simulations how good these calculations are.

C. Poiseuille Flow

1, Between Parallel Planes

The results of linear stability theory (Figure 7) for this flow
are strikingly similar to those for the flow over the flat plate. Accord-
ingly, it may be expected that transition to turbulence will occur as in
the case of the flat plate. One major advantage is that the downstream
boundary-condition problem can be avoided by the reasonable assumption
of periodicity. A disadvantage compared to the flat-plate case is that

comparable detailed experimental information does not seem to be available.
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FIGURE 7 THE FORM OF THE NEUTRAL CURVE IN THE (k,Re)
PLANE FOR A PLANE POISEUILLE FLOW. Source:
Monin and Yaglom (1971).

2, In Pipes

This is a particularly interesting situation since, in contrast
to all other problems we have discussed, the flow is apparently stable
with respect to infinitesimal disturbances. We say apparently since:

(1) Extenzive theoretical efforts using linear-

stability theory have failed to find any
unstahle modes,

(2) Experimentally the transition Reynolds' number
seems to go ever higher, the lower the ambient
disturbance level. (Of course, neither of these
is a proof.)

At least two ideas as to how the observed turbulence originates
have been suggested. One is that there is a finite amplitude instability.
If this is the case, numerical simulation seems to be of little value.
The observed transition in terms of turbulent bursts suggests that in a
calculation we would either be in a laminar region (of little interest),
or in a turbulent region where we cannot resolve the flow. The second
suggestion (Smith. 1960) is that turbulence originates in the inlet
region before the full Poiseuille profile develops. If this picture is

correct, the numerical calculations would be similar to those for the
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flat-plate boundary layer,

It should be possible to calculate most of

the way to transition to fully developed turbulence,

D, Modifications of the Flat-Plate Problem

Assuming Successful completion of the flat-plate calculations, a

number of 1nterest1ng numerical experiments might be performed, Some

require very 1ittle cvde modification, Thus, the effects of suction,

roughness, and compliant boundaries can be treated by merely changing
the boundary conditions imposed on the plate, The effects due to heating

could also be treated. An additional equation (for the temperature)

would have to be used, and the appropriate variation in viscosity needs

to be included, While some recoding would be Necessary, the order of

magnitude of the computation needed would not be changed.
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VII ON CONTROLLING THE TRANSITION TO TURBULENCE

The development of a three-dimensional numerical simulation code
will give us a powerful new tool for assessing methods to control the
transition to turbulence on a wide range of bodies--i.e., not just bodies
of revolution and two-dimensional airfoils, We use the phrase ''controlling
the transition” in a general sense so that studies of effects that sub-
stantially advance the transition (e.g., excessive surface roughness)

are also included in the scope of the investigations,

Let us first turn to ways to calculate and control linear Tollmein-
Schlichting instabilities, Here a number of methods have already been
suggested: (1) compliant surfaces, (2) changing the equation at state
(e.g., adding heat, polymers, etc.), (3) suction, and (4) control of the
pressure gradient, Except for pressure gradients, which have enjoyed
wide use, the optimum ways to use Methods 1 through 3 remain to be devised.
Furthermore, even though one is dealing with linear-stability problems,
there are important nonlinear effects in the ways the laminar boundary
layer and potential flow patterns are altered by the measures used to
delay the transition. For example, adding heat changes the viscosity,
and the viscosity gradient in turn alters the laminar boundary layer in
a direction toward stability., Clearly, heat added at one location on the
surface of a body will diffuse across the boundary layer and have a much
smaller effect downstream. Thus the combination of heat transport via
diffusion and convection, coupled with the linear-instability mechanisms, |
becomes a complicated problem that is probably most easily solved by a

direct simulation rather than linear-stability analysis, The present codes

=

must be generalized to include heat transport, of course.
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The second-class methods to alter the transition involve nonlinear

changes in the flow within the boundary layer--e.g., nonparallel flows,
surface roughness, and abrupt changes in the body shape. As examples

we can cite the early transition to turbulence that occurs on some rough,
blunt bodies and the use of small span-wise or flow-wise grooves to
stabilize the Tollmein-Schlichting waves, Also, swept-wing airfoils
have boundary layers with nonparallel flow. The numerical simulation
approach gives us a single technique that can handle this wide variety

of problems,

Overall, our studies indicate that numerical simulation techniques
have sufficient resolution to accurately predict transition and that they
can be adopted to circumstances where the laminar boundary layers differ
appreciably from the simple parallel-flow ones now commonly used.,

Initial studies of such phenomena would take a year to complete, and a

comprehensive program would require three to five years,
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VIII THE IMPACT OF NUMERICAL SIMULATION OF TURBULENCE

Let us suppose that three-dimensional numerical simulation techniques
have successfully reproduced many of the phenomena that occur in flat-
plate flows, What comprises the next generation of problems both in the

practical and research areas?

An important class of practical problems concerns the simulation of
the transition to turbulence in configurations where linear-stability
analysis fails or is exczssively complicated due to geometry, These
problems will require the development of a more flexible code that can
handle both fairly general boundary conditions (e.g., surfaces rough on
the scale of the boundary layer) and heat transport. Fortunately, almost
every body can be represented by a sequence of simulations each of which

represents a small portion of the surface,

The impact of the numerical simulation of turbulence is that it will
be a single technique that will handle many problems not only of a linear-
stability type but also inherently nonlinear, such as finite-amplitude
surface roughness, The ability to compute the combined effects of both
linear and ronlinear processes for initiating transition is a strength

unique to the numerical simulation approach,

The rext generation of research problems should be chosen to help
us understand how well the simulation code represents fully developed
turbulence, Estimates clearly indicate that the inertial range will be
described poorly if at all, For example, high-frequency bursts of
turbulence may not occur in the correct frequency range, On the other
hand, many of the overall properties of a turbulent boundary layer (such

as drag, heat transport, etc.) may be quite well represented since they
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depend much more on the larger, energy-containing eddies, Therefore,
there exists a strong possihility that numerical simulation may produce
a useful enough representation of the turbulent boundary layer so that
the effect of body shape, etc., on the transport properties of the layer
can be calculated--at least in a semi-quantitative manner. Such a pro-
gram would require codes with flexible boundary conditions and carefully
thought out sub-grid closure schemes, Its impact would be to produce a
first-principles calculation of the arbitrary coefficients that occur in
turbulent-boundary-lcyer theory, and, more importantly, to see if there
are circumstances in which these coefficients vary by a significant

amount.
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IX RECOMMENDATIONS

A program of numerical simulation that could be expected to have a

significant impact on our knowledge of, and ability to predict, the

transition from laminar to turbulent flow might consist of the following:

(1)

(2)

3)

(4)

A commitment to the program for a significant length of
time, Crash programs seem to be counterproductive, Four
to five years is a reasonable time scale,

An aspect of competition., There should be at least

two groups performing the calculations. In the beginning
they should be calculating as closely as possible the
same problem, and with the same parameters used in the
experiments., Later, when confidence has been obtained
the groups could begin dividing up the problems suggested,
It is reasonable that the groups use somewhat different
computation schemes, A number of such schemes suggest
themselves, It would be efficient to use the program

to evaluate their relative merits, The schemes used to
date--i,e., those of Grosch and Orszag--seem sufficiently
representative,

A small advisory panel. This might consist of a group
(~ 4) of active workers in the field. The members might
be an experimentalist, a theoretical hydrodynamicist, a
computer expert, and a numerical analyst., They would

be expected to work closely with the computing groups,
Fopefully, they would spot difficulties or uncertainties
in given calculations and direct the program (i.e., while
we have given a tentative ordering of problems to be
done, it would be expected that the advisors would con-~
tinually reassess the next stages of the program in the
light of what had been accomplished),

An expenditure of the order of $200,700 per year, This
might produce between 30 and 100 runs on one of the
problems outlined above., We envisage a few man-years
of effort and ccmputation on a computer comparable to
the 7600. This sum may or may not include support for
experimental work that might be found advisable,
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Appendix A

LINEAR-STABILITY ANALYSIS AS A PRACTICAL TOOL

On a properly designed and fabricated body, the transition from
laminar to turbulent boundary layers occurs through linear instabilities
whereby free-stream fluctuations in velocity, pressure, and temperature
enter the boundary layer and are spatially amplified via the Tollmein-
Schlichting waves. A sufficiently large amplification results in non-
linear effects that initiate the transition to turbulence. The transition
prediction method of A.M,O, Smith and his colleagues is the onliy predic-
tion method that now makes use of the spatial amplification concept--a
process that must occur physically, Indeed, Smith's e10 method has been
the most successful predictor in ARPA's program as well as in predicting

transition for the various airfoils.

But Smith's method has not recelved wide use because the spatial
amplification rates are derived from the solution to an eigenvalue problem
involving 4th-order differential equations, The solution to these equa-
tions, which must be done by computer for an arbitrary laminar bnundary
layer, are conceptually straightforward but quite laborious in practice.

A well documented and widely available computer program is called for,

We therefore recommend that ARPA fund an effort to produce a computer
program (most likely in FORTRAN) that will run on a number of the more
generally available scientific computers., The core of the program will
be the 4th-order eigenvalue solver, Auxiliary parts will integrate the
spatial amplification factor along the body, and calcuiate the laminar

boundary layer, potential flow, etc.

Preceding page blank
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The wide availability of such a program would allow body designers
to test proposed bodies against Smith's criterion on an in-house basis,

hopefully allowing a more rapid convergence to optimum designs.

The need for this computer program is an example of a situation in
which an increased understanding of the basic physics has led to more
sophisticated design criteria that can be implemented only by a computer
program, Of course, some generality is lost from the older, more gross
engineering criteria, But, it is only through such a program that the
effects of the details of body shape on the transition to turbulence can

be quickly evaluated.

In closing this section, we should remind the reader that transition
can occur through channels other than linear Tollmein-Scnlichtirg ampli-
fication, High levels of free-stream turbulence, excessive surface
roughness, and poor body fabrication are examples. The spatial amplifi-
cation method often does not work in such cases. But it does have a good

record of success in those projects where designers have taken the

trouble to eliminate these other sources of turbulence,
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Appendix B

REMARKS ON A SPECIALIZED NAVIER-STOKES COMPUTER

1. Introduction

Reference 2 has considered the question of what can be accomplished
with modern machines such as the ILLIAC 1V, IBM-370/195, and CDC-7600.
The purpose of this appendix is to consider the wisdom of designing a
special computer that could greatly exceed the capabilities of the current
maéhines in solving only a specialized class of problems--i o,, the
Navier-Stokes equations, and similar partial differential equations
arising in plasma physics, hydrodynamics, weather prediction, geology,

etc,

a, An Interesting Calculatggﬂ

An interesting numerical simulation well beyond the capabilities
of current machines is the fully resolved three-dimensional turbulent
fluid flow for a Reynolds number of 104. This requires a grid of
(104)9/4 = 109 mesh points for each point in time. Each mesh point must
represent the velocity and pressure fields so that three velocities and
one pressure term are required at least for the present instant in time
and the immediate past., The past values are needed in order to march
forward in time with a numerical integration procedure. Thus 8 X 109
scalar variables are required, and about (104)3 1n 104E= 1013 arithmetic
operations are required, A more detailed count of arithmetic operat.ons
of an e¢fficient finite differencing scheme for 109 grid points indicated
that 5 X 1011 additions and 3 X 1011 multiplications are needed per time

2
step. A rough guess iz that about 101 instructions would be required
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12
to implement these operations so that about 2X 10 read accesses from
storage are required for each simulated time step. These parameters are

summarized in Table B-1,

Table B-1

PARAMETERS OF AN INTERESTING TURBULENCE CALCULATION

Three-Dimensional Geometry

Reynolds number: R = 104

Resolution: 109 spatial mesh points per time step

Memory size: 1010 scaler variables

Arithmetic operations

(finite-difference method)
Additions: 5 X 1011 per time step
Multiplications: 3 X 1011 per time step

Instruction execution rate: 1012 per time step

Memory bandwidth: 2 X 1012 read accesses per time step

b, Current General Purpose Computers

Table B-2 lists some critical state-of-the-art parameters of
modern computers, Note that with a simple array system of secondary-
storage access systems, more than 2 X 1010 x (2 x 106)-1 = 104 s would
be required just to update each grid point for each simulated time step.
Parallel access to the secondary storage will reduce this time, however,
The instruction execution time for a very-high-performance single CPU
(control processing unit) is at best 25 X io'g s, so that 25 X 109 X
2 X 1012 =5 X 104 s or about 14 hours per simulated time step would be

9
required. Thus it seems infeasible to simulate 10 grid points since
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Table B-2

MAX IMUM-PFRFORMANCE PARAMETERS
FOR A {ODERN SINGLE, PIPELINED AND CACHE CPU COMPUTER

Direct-access secondary-storage capacity: 1011 bits maximum--i.e.,
about 2 X 109 variables

Direct-access secondary-storage bi :dwidth: 107 bits/s maximum--i.e.,
about 2 X 10% variables/s

Arithmetic operation time: 25 X 109 s minimum (pipe-
lined)
Cache memory access time: 25 X 10”9 s minimum )

many time steps would be required in a practical problem. Clearly, the
usual von Neumann computer architecture cannot be used, and other choices

should be considered.

c. ILLIAC IV

The ILLIAC IV (Bell and Newell, 1971) is a radical ceparture
from classical computer archite :tura, It was designed fer array-type
calculations. The critical parametars of the ILLIAC IV are given in

ble B-3, The most limiting factor is the l1imited secondary storage of
only 109 bits as compared to the 1012 bits that are required, Even if
the ILLIAC should be sup,lemented with large disc drives, the bandwidth
to secondary storage would be less than 109 bits/s as compared to 60 X 1010
bits needed for one simulated time step. It would take more thar 60 X
10-9 = 600 s just to read in data for one simulated time step, Calcula-
tions would require about 2 X 10°% X 2 X 240 X 10" + 64 = 15,000 s per 9

gimulated time step, if all input-output and grid-point data interchanges .

are ignored. Thus even an extensively enhanced ILLIAC IV cannut ve us




Table B-3

ILLIAC IV PARAMETERS

64 processing elements
Add time (each element): 240 ns
Multiply time (each element): 400 ns

2048-64 words of 240-ns

memory/element
Secondary storage capacity: 109 bits
Secondary storage bandwidth: 109 bits/s (to all elements in parallel)

to attack this problem, and other types of computer structures need to

be examined,

2. Computer Architecture for Array Calculations

a. Solution Methods

Nonlinear partial differential equations can be solved by a
variety of techniques such as finite difference, spectral, psuedospectr.l,
and Monte Carlo methods. A special computer designed for any one of these
methods will not be optimal for any of the others. Also, while it appears
that finite-difference methods are the most flexible relative to boundary
complexity, etc,, the pseudospectral methods are much better when regular
surface boundaries exist. Furthermore, integration algorithms are in a
dynamic state of development and better algorithms are quite likely to

emerge in the near future. Thus, only very flexible and general computer

structures should be considered,




s

b. Computing Requirements

What are the common characteristics of a large class of non-
linear partial differential equation solution methods? First of all,
for very arbitrary boundary conditions some finite-difference and suc-
cessive over-reiaxation methods must be employed, dowever, if well
behaved boundaries (planes, spheres, cylinders, etc.) exist, then the
pseudospectral methods offer large savings in computing effort. In fact
it appears that the 109 grid problem will be asttacked in the foreseeable
future only by pseudospectral or other methods that .ake advantage of
particular features of a given problem. Finite-difference and relaxation
methods require only that information be passed between neighboring grid
points. The spectral techniques on the other hand need global informa-
tion at every grid point in order to calculate a Fourier or other trans-
form (Orszag, 1974), However, a very large class of transforms can be
implemented through the fast Fourier transform (FFT), Thus the archi-
tecture of the computer should be such that grid points can interchange
information with their close neighbors and also be able to perform 3-

dimensional FFTs on the quantities of the grid points.

From Table B-1 it is evident that to solve the Navier-Stokes
equations, for a large number of grid points, about ten variables per
grid and 1000 operations per grid point are required for each simulated
time step, More complicated problems involving compressible fluids,
electromagnetic fields, etc,, might double both of the ¢.'antities so that
in designing a relatiely flexible computer, perhaps 32 variables per grid
point should be selected and 2000 to 4000 operations per grid point per
time step assumed, If it is desired that a time step be simulated in

about a second, then abcut 3200/32 = 100 opérations per second are needed

for every variable.




')

Cs Performance Tradeoffs

Very fast pipelined logic (a high-performance processor) could
7
perform about 2 X 10 operations per second while a slow serial processor

3
might only be able to do about 3 X 10 operations per second,

For one second of execution time per simulated time step,
2 X 107/200053 104 grid points could be processed by a single high-
performance processor with (10 to 32) X 104 registers per processor
(i.e., approximate 106 bytes). However, an interconnected array of
109 X 104 or 109 X 105 high-performance processors would be required to
handle the 109 grid-point problems. This approaca seems to be far beyond
near-term technology hence is therefore considered infeasible. Even if
the calculation time were increased considerably and the logic speeds
could be greatly improved, an impossibly large array nf very-high-
performance conputers would still be required, 1In any case, the pro-
cessors of such an array would be very similar in structure tc the present
high-performance machines discussed earlier so that beyond creating
special FFT hardware attachments to the usual sort of pipelined processor
(or array nrocessors for ILLIAC 1V), it appears that little can be gained

by a special computer architecture using high-performance operations,

An interesting situation develops, if however, the low-
performance serial organization is considered. 1If one slow serial pro-
cessor were ""devoted" to one grid cell and hence 32 variables, the re-
sulting computer structure would be a three-dimensional array of slow
serial processcrs, each with about 32 registers, connections to its
neighbors (six each), and connections to implement an FFT (see Appendix
E for duration of the FFT) in three dimensions (six additional connections

per cell),

A more efficient arrangement in terms of total number of inter-

3
connections is to use one processor for every (N ) grid points; for the
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lowest-speed serial processor, this could require as long as ten seconds
to simulate one time step. This may very well be an optimal arrangement
for a special-purpose computer devoted to solving hydrodynamic equations,
As N is increased, the arrangement of cells is nut changed but a few
more instructions per cell are required for individual grid-point selec-
tion within a given cell, Table B-4 illustrates the possibilities for
several values of N, It is significant to note that by 1980, it may be
feasible to construci a computer to solve the 109 grid problem for about

the cost of the ILLIAC IV (in 1970 dollars).

3. Conclusions
It can be concluded that:

(1) Direc* numerical simulation of turbulence for most
important and interesting problems cannot be accomplished
with present-day computers or even with general-purpose
computers proposed for the near fuiure, Hence, many of
these simulations will be impossihle without snecial-
purpose computers that have been custom designed to
solve partial differential equations,

(2) Algorithms for solving partial differential equations
are in a dynamic state of development, Thus any pro=
posed special-purpose computer must be very flexible
relative to solution method as well as to the kinds of
problems it can handle. In particular, it should be
capable of finite-difference calculations and relaxation
calculations as well zs spectral and pseudo spectral
calculations for sets of partial differential equations
that arise in hydrodynamlcs, plasma physics, aerodynamics,
global weather, etc, Hence, each grid point must be
able to exchange information with neighboring grid
points and must be capable of in-place, three-dimensional
fast Fourier transformation of the grid-point quantities.

(3) A special purpose very-high-performance computer could
be organized for the 109-grid-point problem by using a
large-variety of high-performance, expensive components.
However, the many different types of components required
and their diverse interconnections would not allow any
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(4)

(5)

(6)

(7

(8)

regular construction pattern, so that the complexity
would be overwhelmingly great. Such a machine appears

impractical for the near future (the next 10 to 15 years),

A cellular-array computer, composed of a single inexpensive

general-purpose minicomputer driving a very large,
regular array of identical cells of a single type, each
cell of which represents one or more grid points, does
appear to be feasible for the 109-grid-point problem

by the early 1980s.

A cellular array of more modest size might be very
effective for calculating some specialized problems

in the transition to turbulence, plasma instability,
etc., hLence, some smaller array may be worthwhile prior
to the 1980s, when ISF technological advancements

will probably allow the construction of the large

array for a cost that is not totally unreasonable,

A very modest investigation of the cellular-array
computer appears to be justified, since many
interesting questions must be answered before such
a machine could be constructed.

Extensive simulation of the array machine should
precede any commitment to hardware, This could be
accomplished by a continuing research program at
modest cost,

The potential benefits of a powerful computer of the
type proposed here seem to be very great. Some
further investigation is certainly indicated.
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Appendix C

A MODEL TO STUDY DOWNSTREAM BOUNDARY CONDITIONS

In the muin text a number of arguments were given to suggest that
downstream boundary conditions cause little effect at a few-boundary-

layer thickness upstream, Here we give a simple model in which we can

verify the statements,

We consider Couette flow between a stationary plate at y 0 and a

§. The

plate moving with velocity U in the x-direction at position y

laminar solution of the Navier-Stokes equations is
v = [uo(y), 0,0 , where uo(y) = Uy/8 .

(Thus we are approximating the Blasius-type profile by a straight line,)
Further, we neglect viscosity and restrict ourselves to flow linearized
around the laminar solution, We wish to see how a disturbance at a point
affects the flow uostream and downstream from that point, Writing

v = (u° + ul, vl, 0) we have the equations

oYy ouy

+ + v
ot 0 3x 13y

avl ou
—_—tu T =
ot o

ou v

ox oy

Introducing a stream function ¢ by
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we readily find that

2 2
(& ok (9_2+§_;)=
ot 0 3x ax2 ayz

2 2 2 2
(Note that 3 /3x + 3 /3y 1s Jjust the vorticity of the perturbed flow,)

Taking ordinary Fourier transforms with respect to space tnd one-sided

ones in time--i.e.,

(- -]
o ipt
w(xl}va) = e N @(X,th) dt ’
0
and
(- -]
~ -ikx ~
wolk,y,w) = e o(x,y,w) dx
-0
--we see that
2~ g
d o _ k2 N W(k,y,0) (=15
2 ©7 ik w)
) dy o

where W(k,y,o) is the spatial Fourier transform of the initial value of

the vorticity.

Explicitly,

5 -ik
W(k,y,0) = e % po(x,y,0) dk .

-0

If we introduce the Green's function G(y,y’,k) by
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sin ky sin k(6§ - y)

G k) = = <y’
(y,y',Kk) K sin k & ys<y
_ sin ky’ sin k(6 - y) e 5
= k sin k 6 y=y
the solution of Eq, ‘C-1) is given by:
1
) W(k,y’,0)
k = G 7 gy ——L—t— gy’ .
o(k,y,w) (v,y',K) T0au_(y)=w) y
0
Inverting the time Fourier transform gives
-iku (y’)t
~ o -~
o(k,y,t) = e G(y,y’,k) W(k,y’,0) dy’
0
and then
1
ik[x-u (y’)t]
o ~
ex,y,t) = dy’ e G(y,y’,k) W(k,y’0) dk .
0 )

(C-2)

Now, let us consider the effect of an initial disturbance at x = 0,

y W Thus,
be(x,y,0) = 6(x) 6(y - yo) s

Then W(k,y’,0) = 6(y - y_) and Eq. (C-2) becomes

= ik[x-u (y )t}
x,¥,t) &= e °© % G&ty,y ,k) dk
w ’ ’ 2“ 'o’ .
=<0
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The integral can now be evaluated by residues, (To avoid unnecessary

repetition we report merely the results for y < yo.) Thus,

(a) Consider x - uo(yo) t<o.

(This includes all upstream points and downstream
points after a sufficiently long time.)

The result is:

e i e"ﬂ/&[x-uo(yo)t] (_l)n o RETER Yo)

sin —5_ sin ——
n=1

nn
(c-3)

Notice that the disturbance falls off exponentially
with distance upstream (in a length ~ §) and decreases
with time exponentially at any fixed point,

(b) x-ud(y)t>o,
o] o

These are downstream points at sufficiently small times,
Here:

: © -nn/é[x-uo(yo)t] (_l)n i nn(§ -y )
p(x,y,t) = E e _IT sin T sin —6—— -

(c-4)

Thus at a fixed point upstream the disturbance grows [according to

Eq. (C-4)], reaches a maximum, and then decreases according to Eq, (C-3).
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Appendix D

BOUNDARY CONDITIONS

There is a general class of problems, of which the transition problem
is an example, that require a careful examination of boundary conditions,
We first examine the question of what must be specified in order to arrive
at a unique solutioan, and we then examine a set of boundary conditions
for the specific problem under consideration., Lastly, we show that in
principle there is a computational scheme that follows from this speci-

fication,

The Mavier-Stokes equations for an incompressible fluid governing

two flows v1 and v2 are:

L2, v P + .
. gV = - v
at Yi,2 V2 V12 TV g
. =0 J
Vil
Defining
M i
P=P -P
1 2
We find
av

"~ 2
S0 gy, = NG i, ST R
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Yy v=0
V. ¢« YV, = V_ « Qv _=vVv_ . + - . = . + .
VI I A LA AR A A DR vy,

Thus,

av

~ 2
AT Y VLY Oy, =P Wy

Ve.ev=0 3

The energy in the difference flow,

E 2 b ae
L= =V
2

is governed by

2
£+{vovv—+Vovv v)d*——f -Pv+va Ve v
at ') ~12 "~ Vi ¥ydi==4v Py W

which may be rewritten

If we suppose that v1 = v2 on the boundaries, the surface terms vanish

Assume that vv2 is bounded and its maximum is gi'en by

M=mnm 5
ax(vvz)
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¥

Then

oE
a1
3t 2M(t)E :

We can then write

t
2§ Mt Hdt’
0 < E(t) < E(O)e °

from which it follows that if E(0) = 0, E(t) also vanishes.

We have therefore proved that specifying the velocity on the bound- ‘

aries is enough to provide a unique solution.

We next turn to examine the specification of the boundary conditions
appropriate to the problem at hand. The coordinate system is shown in

Figure D-1. The steady flow satisfies the exact cquations

2 2
v v v d v
SN SRRt GRESY- Pl SN QAR
X OXx z dz ox ax2 az2
ov dv /ézv ﬂzv
_z oL, Ry S
vx ox g vz dz oz 2 2
ax Az

BOUNDARY
LAYER

SPACE
FLOW

FIGURE D-1 COORDINATE SYSTEM
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v v

X z

=fF =0 . 1
ox dz
The usual physical picture of boundary-layer theory involves the assump-

tion that the flow is more slowly varying in the x direction than in the

z direction. Thus we may write

'2- = € — e <1
ox aex
and find
2 2
dv v d v d
V ™ € + v — = = & ¢ 3 v —da e2 + Vx ,
X 0€x z dz  dex 2 2
d(ex) Az
2 2
y v o) d
v 3:5 € + v E-E = EE + Vv 'z € + VZ
€ = 2 2
z 0€x z 9z dz 3(ex) 3z
avx 5vz
—_— C 4+ =0
dex dz
The divergence equation clearly requires ‘
v=€;
z z
which yields
2 2
dv v dv dv
b v 5 Ly A S BE L <, o e (LIS
€ dz € 2 2
X Q€x z dex a(ex) 3z
- - 2— 2—
v dv dv d v
v —= 4y —2=. - + Vv 2 ¢4 2 :
X J€x zd 3z 2 ¢ 12 i
€ {ex) oz
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In order to balance the viscous and inertial forces we then must have

which finally yields the standard boundary-layer equations,

write in the original variables

oP
-—:0
oz
2
v dv .}
S x__® %
x Ox z dz 3x 2
oz
2
ov dv 3 v
z s z 2
S e —_—=
X &x z dz 2
oz
Bvx av2
T === 0
ox oz
Estimating the terms vields
2
dv ov
— ~
X X 2
ik oz
or
v
v ~=2
X 2
z
\V]
v~- L ]
CAR

This immediately suggests the Blasius similarity solution
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v = Ut
X

with

v == g(M
z Z

This leads to the nonlinear equation

1" + 2t =0
and the boundary conditions
t=0 , f'=0 , z=¢C
£/ =1 z P ®

Since these solutions are only approximate, part of the flow field that
develops in time in the computation will result from the equation trying

to predict the actual solutions. We look for solutions of the form

-iwt iBy ifw(x)dx
e e
f = f(z)e

and we know that the resulting equation is a form of the Orr-Sommerfeld

equation which is fourth-order in z, Two boundary conditions are provided
by the vanishing of the perturbed flow at the bottom and top, and two more

involving the derivatives are providzd by the vanishing of other components

of the velocity. The resulting eigenvalue equation
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h(w,B,x,R) =0
yields the local spatial growth. In general, defining the boundary-layer

thickness
|

6’dvx/U

and the Reynolds number

|
6/
o s
v

yields curves of the form given in Figure D-2. The actual experiment of

3
S
GIVEN FLOW, X INCREASING
:
ab UNSTABLE
, R
4 FIGURE D-2 STABILITY DIAGRAM FOR BOUNDARY-LAYER FLOW

Klebanoff et al. (1961) corresponds to point A for the upstream condition.

the numerical calculations may be started at

To save calculational time,

point B, which is 100 cm downstream, and the calculation can be stopped

| at point C.

A summary of a physically reasonable set of boundary conditions that

at least is mathematically unique is then given by

(1) Global constraint, fdS y . n:=0.

(2) Bottom plate, v = 0, no slip condition.
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3)
(4)

(5)

(6)

We now wish to show that,
yields a method of numerical calculation.

is specified everywhere and for all t, v is specified

Top of region, v, = U(»), free stream.

Spanwise, the flow is symmetric, Thus, v _ = 0 at the
sides, and avxfﬁy and dv_/ady both vanish.  Although the
original uniqueness proof was carried out for specified

v, the surface terms vanish except for

v2 AVX avy v >
3 Z
fdsn Vz -fdx dz(xay +vy > +vZay

which vanishes for the specification of derivatives
given above.

Upstream. As discussed above, the conditions are

v = U(z) + Ov
X X
v = 0v
y y
v = bv
z z

where U(z) is the Blasius profile corresponding to a
position 100 cm downstream from the entrance, and 61

ijs a linear combination of twr- and three-dimensional

Tollmien~-Schlichting waves. These waves are choszn
to correspond to the driving frequency of the ribbon

in the Klebanoff experiment and to have the periodicity

in y imposed by the spacers.

Downstream. Here we assume that the conditions imposed
in (5) are simply carried downstream to a location at

x = L corresponding to point C in the stability diagram,.
We know that the spatial growth is converted downstream
with a velocity c that is less then U_. Thus, for some
period of time, chosen so that transition occurs in the

volume of the calculational domain, the downstream
boundary conditions will not change.
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From the Navier-Stokes eguations and V * v =0, it follows that

2
v1>=-v-(x-vx)

A Greens function G satisfying

yields the solution

P=fds(GE'VP—PE'VG)-IGV-(X'Vx)ds .

Since P is unknown on the boundary, choose n- vG = 0 there. We are
guaranteed then that G exists. From the normal component of the Navier-
Stokes equation on the surface

2
—v-B+X'Vv'n=—5-VP+vVv'5
we see that n * VP is determined in terms of known quantities., Thus,

2 el
P_fG[vV! E_Bt

and is determined everywhere. Now, knowing P we use

<

-n-g-Vx.E]ds-IG(V.x-Vx)dt

dv &
—_—==YP + VWV -Vv* VW
at ~ ~ ru

and the knowledge of v everywhere to advance vy forward in time at every
interior point of the calculational mesh. In a crude sense this represenis

a proof of the existence of solutions to these equations.
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THREE-DIMENSIONAL IN-PLACE FAST-FOURIER TRANSFORM ARRAY
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Appendix I

THREE DIMENSIONAL IN-PLACE FAST-FOURIER~TRANSFORM ARRAY

Assume that it is desired that an array of cel’s is to be permanently

connected with as few connections as possible such that three-dimensional,
in-place, fast Fourier transforms can be made of variables stored within
the cells., That is, if the elements of matrix A, ai are stored in
cellijk' then matrix B with elements b

1 3k are 1o be calculated according
to

=
"

FlA]

L-1 M-1 N-1

M-l il im kn
biJk';Ezazmexp 2t \L "wm *%
=0 m=0 n=0

Stone (1970) has shown how a one-dimensional FFT on an array of cells can

be accomplished in place by a "perfect shuffle" interconnection between

cells., Only two inputs and two outputs per cell are required. Despain

(1974) has shown how FFT operations such as those used within the cells
used by Stone can be implemented without calculating or storing the

trigonometric coefficients usually employed (cordic methods). This makes

practical an arruy of simple identical cells that can be made to perform

an in-place transform of variables stored in the cells,

Three-dimensional transforms are generally accomplished as three

successive groups of one~-dimensional transforms. However, it is possible

to simultaneously transform in all three dimensions at the same time.

This is of great advantage for the three~dimensional array of cells, since

the "perfect shuffle"

connections are permanently connected in all three
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dimensions and parallel data transfer (and calculations too if desired)

can proceed simultaneously and at a much greater rate than if separate

transforms are taken in succession,

The connecticnh pattc.n is symmetric in all three dimensions.

E-1 and E-2 illustrate these patterns for one and two dimensions.
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FIGURE E-1  PERFECT SHUFFLE CONNECTIONS
FOF 1-D FFT, N = 16

A Wiviy
| &ﬁ/\b

il

O——3F—0—o0
FIGURE E-2 4-BY-4 ARRAY OF CELLS FOR A

2-D FFT NETWORK
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